Home | Galleries | Articles | Reviews | Best Gear | Science | New | About | Contact |
by Roger N. Clark
This page shows an analysis of noise, dynamic range, and full well capacity of a Canon 7D camera. It also shows the dark current and noise from thermal dark current as a function of temperature.
Procedures for performing this analysis are described in: Procedures for Evaluating Digital Camera Noise, Dynamic Range, and Full Well Capacities; Canon 1D Mark II Analysis
The lowest possible noise from a system detecting light is the noise due to Poisson statistics from the random rate of the arrival of photons. This is called photon statistics, or photon noise. Noise from the electronics will add to the photon noise. Noise in Canon 7D images is limited by photon statistics at high signal levels and by electronic noise from reading the sensor (called readout noise) and noise from the downstream electronics at very low signal levels. In the case of high signal levels, a system that is photon statistics limited enables us to directly measure how many photons the sensor captures, and by increasing the exposure, we can determine how many photons are required to saturate the sensor. That is called the full well capacity, or simply, maximum signal capacity. With data on the lowest noise to the highest signal, we can then determine the dynamic range of the sensor.
Results: Canon 7D sensor analysis
Table 1 ------------------------------------------------- Apparent Maximum Measured ISO Gain Read Noise signal Dynamic range e/DN (electrons) (electrons) stops 100 2.15 12.1 24800 11.0 200 1.23 7.6 16300 11.1 400 0.61 4.9 8150 10.7 800 0.31 3.8 4080 10.1 1600 0.15 3.0 2040 9.4 3200 0.077 2.7 1020 8.6 6400 0.038 ~2.7 510 7.6 Pixel pitch: 4.3 microns. 18 megapixels. S/N on 18% gray card, ISO 100 = 67. Sensor Full Well Capacity at lowest ISO: 24,800 electrons. Sensor dynamic range = 24800/2.7 = 9,185 = 13.2 stops. ISO at unity gain (scaled to 12 bit) = 984 (14-bit unity gain = ISO 246). Low Light sensitivity Factor: 364. Apparent Image Quality, AIQ = 60. -------------------------------------------------
Fixed Pattern (Banding) Noise
Table 2 shows the noise as a function of ISO in image form. The images illustrate several things: 1) lower banding noise at higher ISOs. 2) Better detection of smaller signals at higher ISOs (the random noise decreases). 3) At a certain high ISO, improvements decrease, meaning there is no benefit to higher ISO. Note, ISO is a post sensor gain and does not increase sensitivity. Increasing ISO digitizes a smaller range (see Table 1) but does improve the noise floor up to a point. For night and low light photography, ISO 1600 produces excellent results. The 7D camera has lower fixed pattern noise at ISOs less than 800 than many other Canon cameras tested, including the Canon 1DX, but falls way below the new Canon 7D2.
Table 2a. Apparent Read Noise, Central Image | |
ISO 100 Image Range: -20.00 to 20.00 electrons about the mean Central 500 x 300 pixel statistics: min= 4343 electrons max= 4474 electrons mean= 4404 electrons standard deviation= 12.35 electrons | |
ISO 200 Image Range: -20.00 to 20.00 electrons about the mean Central 500 x 300 pixel statistics: min= 2451 electrons max= 2590 electrons mean= 2519 electrons standard deviation= 7.68 electrons | |
ISO 400 Image Range: -20.00 to 20.00 electrons about the mean Central 500 x 300 pixel statistics: min= 1190 electrons max= 1316 electrons mean= 1249 electrons standard deviation= 4.94 electrons | |
ISO 800 Image Range: -20.00 to 20.00 electrons about the mean Central 500 x 300 pixel statistics: min= 569 electrons max= 712 electrons mean= 635 electrons standard deviation= 3.85 electrons | |
ISO 1600 Image Range: -20.00 to 20.00 electrons about the mean Central 500 x 300 pixel statistics: min= 245 electrons max= 377 electrons mean= 307 electrons standard deviation= 3.07 electrons | |
ISO 3200 Image Range: -20.00 to 20.00 electrons about the mean Central 500 x 300 pixel statistics: min= 106 electrons max= 218 electrons mean= 158 electrons standard deviation= 2.87 electrons |
Table 2b. Apparent Read Noise, Full Image, sub-sampled | |
ISO 100 Image Range: -20.00 to 20.00 electrons about the mean Full image statistics: min= 4304 electrons max= 4513 electrons mean= 4404 electrons standard deviation= 12.29 electrons | |
ISO 200 Image Range: -20.00 to 20.00 electrons about the mean Full image statistics: min= 2417 electrons max= 2621 electrons mean= 2520 electrons standard deviation= 7.60 electrons | |
ISO 400 Image Range: -20.00 to 20.00 electrons about the mean Full image statistics: min= 1144 electrons max= 1344 electrons mean= 1249 electrons standard deviation= 4.92 electrons | |
ISO 800 Image Range: -20.00 to 20.00 electrons about the mean Full image statistics: min= 540 electrons max= 737 electrons mean= 635 electrons standard deviation= 3.79 electrons | |
ISO 1600 Image Range: -20.00 to 20.00 electrons about the mean Full image statistics: min= 217 electrons max= 399 electrons mean= 307 electrons standard deviation= 3.08 electrons | |
ISO 3200 Image Range: -20.00 to 20.00 electrons about the mean Full image statistics: min= 83 electrons max= 237 electrons mean= 158 electrons standard deviation= 2.82 electrons |
Dark Current and Thermal Noise
On long exposures, electrons collect in the sensor due to thermal processes. This is called the thermal dark current. As with photon noise, the noise from thermal dark current is the square root of the signal. One can subtract the dark current level, but not the noise from the dark current. Many modern digital cameras have on sensor dark current suppression, but this does not suppress the noise from the dark current. It does, however, prevent uneven zero levels that plagues cameras before the innovation (Canon cameras before circa 2008). Examples of this problem are seen at: Long-Exposure Comparisons.
The dark versus temperature for the Canon 7D is shown in Table 3. The uniformity of the 7D long exposure dark frames, Tables 4a, 4b, 3c is outstanding. There is no noticeable banding, enabling multiple frames to be averaged, or very long exposures to be made without annoying pattern noise. Thermal noise ultimately limits the weakest signals that can be detected. Thermal dark current is very temperature dependent, so only compare these values to other sensors made at the same temperature.
The dark current increased 25 times in the 7D from 3 to 22 degrees C or doubling about every 4.25 degrees C on average. Note too that the lower the temperature, the fewer hot pixels show in the image. This makes long expoure night imaging difficult in hot environments, but this is true of all uncooled digital cameras.
Table 3 Canon 7D Dark Current and Noise vs Temperature Noise from Dark Current in Electrons Temperature Dark current versus Exposure Time (seconds) (C) (F) electrons/sec. 10 sec 30 sec 60 sec 120 sec 300 sec 22 72 1.856 4.3 7.5 10.6 14.9 23.6 22 72 1.801 4.2 7.3 10.4 14.7 23.2 19 66 1.216 3.5 6.0 8.5 12.1 19.1 19 66 1.298 3.6 6.2 8.8 12.5 19.7 19 66 1.335 3.7 6.3 8.9 12.7 20.0 14 57 0.540 2.3 4.0 5.7 8.0 12.7 14 57 0.508 2.3 3.9 5.5 7.8 12.3 10 50 0.161 1.3 2.2 3.1 4.4 6.9 9 48 0.118 1.1 1.9 2.7 3.8 5.9 7 45 0.106 1.0 1.8 2.5 3.6 5.6 3 37 0.077 0.9 1.5 2.1 3.0 4.8 3 37 0.072 0.8 1.5 2.1 2.9 4.6 3 37 0.080 0.9 1.5 2.2 3.1 4.9 2 36 0.095 1.0 1.7 2.4 3.4 5.3 -4 25 0.045 0.7 1.2 1.6 2.3 3.7 -4 25 0.045 0.7 1.2 1.6 2.3 3.7 -10 14 0.024 0.5 0.9 1.2 1.7 2.7 -11 12 0.045 0.7 1.2 1.6 2.3 3.7
Table 4a. Thermal Noise, Central Image | |
ISO 1600 Exposure= 601 seconds T= 22 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 238 electrons max= 2175 electrons mean= 311 electrons standard deviation= 33.03 electrons | |
ISO 1600 Exposure= 601 seconds T= 19 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 242 electrons max= 1777 electrons mean= 310 electrons standard deviation= 28.09 electrons | |
ISO 1600 Exposure= 601 seconds T= 19 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 234 electrons max= 1731 electrons mean= 310 electrons standard deviation= 28.48 electrons | |
ISO 1600 Exposure= 601 seconds T= 14 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 233 electrons max= 1565 electrons mean= 309 electrons standard deviation= 17.73 electrons | |
ISO 1600 Exposure= 601 seconds T= 10 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 244 electrons max= 1405 electrons mean= 308 electrons standard deviation= 10.27 electrons | |
ISO 1600 Exposure= 601 seconds T= 9 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 244 electrons max= 1401 electrons mean= 308 electrons standard deviation= 8.92 electrons | |
ISO 1600 Exposure= 601 seconds T= 3 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 237 electrons max= 1385 electrons mean= 308 electrons standard deviation= 7.21 electrons | |
ISO 1600 Exposure= 601 seconds T= -4 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 213 electrons max= 1292 electrons mean= 308 electrons standard deviation= 5.99 electrons | |
ISO 1600 Exposure= 601 seconds T= -10 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 235 electrons max= 1144 electrons mean= 308 electrons standard deviation= 4.86 electrons | |
ISO 1600 Exposure= 601 seconds T= -11 C Image Range: -100.00 to 100.00 electrons about the mean Central 500 x 300 pixel statistics: min= 215 electrons max= 1687 electrons mean= 308 electrons standard deviation= 6.00 electrons |
Table 4b. Thermal Noise, Full Image, sub-sampled | |
ISO 1600 Exposure= 601 seconds T= 22 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 192 electrons max= 2379 electrons mean= 310 electrons standard deviation= 32.88 electrons | |
ISO 1600 Exposure= 601 seconds T= 19 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 202 electrons max= 2378 electrons mean= 310 electrons standard deviation= 28.14 electrons | |
ISO 1600 Exposure= 601 seconds T= 19 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 192 electrons max= 2457 electrons mean= 309 electrons standard deviation= 28.58 electrons | |
ISO 1600 Exposure= 601 seconds T= 14 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 202 electrons max= 2457 electrons mean= 309 electrons standard deviation= 17.92 electrons | |
ISO 1600 Exposure= 601 seconds T= 10 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 200 electrons max= 2375 electrons mean= 308 electrons standard deviation= 10.87 electrons | |
ISO 1600 Exposure= 601 seconds T= 9 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 207 electrons max= 2375 electrons mean= 308 electrons standard deviation= 9.76 electrons | |
ISO 1600 Exposure= 601 seconds T= -4 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 203 electrons max= 2457 electrons mean= 308 electrons standard deviation= 6.84 electrons | |
ISO 1600 Exposure= 601 seconds T= -10 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 172 electrons max= 2457 electrons mean= 308 electrons standard deviation= 6.53 electrons | |
ISO 1600 Exposure= 601 seconds T= -11 C Image Range: -100.00 to 100.00 electrons about the mean Full image statistics: min= 192 electrons max= 2457 electrons mean= 308 electrons standard deviation= 6.35 electrons |
Table 4c. Thermal Noise, Full Image, sub-sampled | |
ISO 1600 Exposure= 601 seconds T= -4 C Image Range: -20.00 to 20.00 electrons about the mean Full image statistics: min= 203 electrons max= 2457 electrons mean= 308 electrons standard deviation= 6.84 electrons |
See comparisons of dark frames from many cameras at: Digital Cameras and Long Exposure Times: Noise and Dark Current Comparisons ../long-exposure-comparisons/
Conclusions
The data shown here for the Canon 7D shows that the camera is operating at near perfect levels for the sensor. This means that for high signals, noise is dominated by photon statistics. The model assumes photon noise and a noise floor given by the read noise value. The model predicts the observed data to within a few percent, proving the camera is photon noise limited over most of its range. Noise at low signal levels is very good, among the lowest cameras measured. There is evidence that Canon has improved the fill factor as claimed in press reports, but on a pixel level, this is offset by the smaller pixel area. To achieve higher signal-to-noise ratio images, a higher quantum efficiency sensor with a larger full well would be needed. Without increasing the full well capacity, the maximum signal-to-noise ratio would not improve. Improvements in quantum efficiency of about 2 to 3 are possible (Reference 2), but currently that would require much more expensive detectors, such as back-side illuminated CCD or CMOS sensors. Note some DSLRs have maximum full well capacities on the order of 50,000 electrons (e.g. Canon 20D) to 80,000 electrons (e.g. Canon 1D Mark II), so the Canon 7D is on the low end of full well capacity, as is expected from its small pixel size. For comparison with a larger pixel DSLR, compare to the Tables and graphs in Digital Sensor Performance Summary.
The constant dark level with long exposure time indicates the camera has on-sensor dark current suppression. This, however, does not suppress noise from dark current. But it results in a uniformly dark level that needs no post processing correction. No long exposure dark frames are needed when making long exposures if recording raw.
Appendix 1
Table A1: ISO 100 Sensor Data and Analysis Offset= 2048 Model gain = 2.15 e/DN Model read noise = 12.2 electrons Observed Observed Observed min max mean 2-img std noise S/N signal ISO relative S/N S/N file (DN) (DN) (DN) (DN) (DN) (electrons) exposure model obs/model _MG_0557 11535.00 11535.00 11535.00 0.00 sensor saturated _MG_0558 11536.00 11536.00 11536.00 0.00 sensor saturated _MG_0559 9951.00 10993.00 10477.52 99.15 70.11 149.45 22334.6 100 1.000000 149.6 1.00 _MG_0560 10031.00 11139.00 10573.92 99.15 70.11 150.82 22747.5 100 1.000000 150.3 0.99 _MG_0561 6150.00 7018.00 6582.11 79.91 56.51 116.49 13569.3 100 0.645162 118.3 0.98 _MG_0562 6248.00 7102.00 6669.38 79.91 56.51 118.03 13931.4 100 0.645162 119.1 0.98 _MG_0563 3702.00 4415.00 4081.06 62.58 44.25 92.22 8504.7 100 0.384616 92.9 0.99 _MG_0564 3747.00 4377.00 4087.87 62.58 44.25 92.38 8533.2 100 0.384616 93.0 0.99 _MG_0565 2264.00 2781.00 2566.34 49.42 34.95 73.43 5392.7 100 0.250000 73.3 1.00 _MG_0566 2281.00 2830.00 2573.59 49.42 34.95 73.64 5423.2 100 0.250000 73.4 1.00 _MG_0567 1351.00 1752.00 1582.42 38.75 27.40 57.76 3336.0 100 0.162602 57.1 1.01 _MG_0568 1359.00 1743.00 1580.54 38.75 27.40 57.69 3328.1 100 0.162602 57.1 1.01 _MG_0569 852.00 1140.00 996.19 30.57 21.62 46.09 2123.9 100 0.096618 44.8 1.03 _MG_0570 849.00 1097.00 980.93 30.57 21.62 45.38 2059.3 100 0.096618 44.4 1.04 _MG_0571 512.00 710.00 620.47 24.43 17.27 35.92 1290.5 100 0.062500 34.6 1.04 _MG_0572 503.00 711.00 618.07 24.43 17.27 35.78 1280.5 100 0.062500 34.6 1.04 _MG_0573 320.00 457.00 390.52 19.96 14.12 27.66 765.3 100 0.040486 26.7 1.04 _MG_0574 312.00 461.00 394.69 19.96 14.12 27.96 781.8 100 0.040486 26.9 1.03 _MG_0575 188.00 301.00 243.33 16.56 11.71 20.78 431.8 100 0.024096 20.2 1.03 _MG_0576 189.00 316.00 254.92 16.56 11.71 21.77 474.0 100 0.024096 20.8 1.00 _MG_0577 112.00 198.00 156.03 13.92 9.84 15.86 251.4 100 0.015624 15.2 1.04 _MG_0578 114.00 210.00 156.43 13.92 9.84 15.90 252.7 100 0.015624 15.3 1.04 _MG_0579 66.00 142.00 101.54 12.53 8.86 11.46 131.3 100 0.010132 11.4 1.01 _MG_0580 61.00 136.00 98.79 12.53 8.86 11.15 124.3 100 0.010132 11.2 1.03 _MG_0581 30.00 105.00 64.58 10.84 7.67 8.42 70.9 100 0.006024 8.2 1.03 _MG_0582 31.00 101.00 64.56 10.84 7.67 8.42 70.9 100 0.006024 8.2 1.03 _MG_0583 13.00 75.00 41.63 9.91 7.01 5.94 35.3 100 0.003906 5.8 1.02 _MG_0584 11.00 77.00 41.87 9.91 7.01 5.98 35.7 100 0.003906 5.8 1.02 _MG_0585 -4.00 63.00 25.78 9.13 6.46 3.99 15.9 100 0.002532 3.9 1.03 _MG_0586 -8.00 56.00 23.48 9.13 6.46 3.64 13.2 100 0.002532 3.6 1.12 _MG_0587 -11.00 49.00 17.60 8.96 6.33 2.78 7.7 100 0.001506 2.8 1.00 _MG_0588 -15.00 55.00 17.53 8.96 6.33 2.77 7.7 100 0.001506 2.8 1.01 _MG_0589 -14.00 44.00 11.67 8.56 6.06 1.93 3.7 100 0.000976 1.9 1.01 _MG_0590 -17.00 41.00 9.91 8.56 6.06 1.64 2.7 100 0.000976 1.6 1.18 _MG_0591 -23.00 35.00 6.38 8.40 5.94 1.07 1.2 100 0.000634 1.1 1.00 _MG_0592 -27.00 35.00 6.62 8.40 5.94 1.11 1.2 100 0.000634 1.1 0.96 _MG_0593 -24.00 32.00 3.97 8.25 5.83 0.68 0.5 100 0.000376 0.7 1.00 _MG_0594 -25.00 39.00 4.17 8.25 5.83 0.71 0.5 100 0.000376 0.7 0.95 _MG_0595 -25.00 43.00 2.30 8.17 5.78 0.40 0.2 100 0.000244 0.4 1.00 _MG_0596 -25.00 30.00 2.72 8.17 5.78 0.47 0.2 100 0.000244 0.5 0.85 Table A2: ISO 200 Sensor Data and Analysis Offset= 2048 Model gain = 1.23 e/DN Model read noise = 7.6 electrons Observed Observed Observed min max mean 2-img std noise S/N signal ISO relative S/N S/N file (DN) (DN) (DN) (DN) (DN) (electrons) exposure model obs/model _MG_0597 13255.00 13255.00 13255.00 0.00 sensor saturated _MG_0598 13255.00 13255.00 13255.00 0.00 sensor saturated _MG_0599 13255.00 13255.00 13255.00 0.00 sensor saturated _MG_0600 13255.00 13255.00 13255.00 0.00 sensor saturated _MG_0601 12278.00 13257.00 13088.49 146.62 103.67 126.25 15938.0 200 1.000001 126.7 1.00 _MG_0602 12607.00 13257.00 13241.76 146.62 103.67 127.72 16313.5 200 1.000001 127.4 0.99 _MG_0603 7480.00 8918.00 8235.19 125.57 88.79 92.75 8602.8 200 0.596155 100.4 0.92 _MG_0604 7434.00 8797.00 8195.07 125.57 88.79 92.30 8519.2 200 0.596155 100.1 0.93 _MG_0605 4505.00 5541.00 5030.62 97.71 69.09 72.81 5302.0 200 0.387500 78.3 0.93 _MG_0606 4569.00 5560.00 5111.64 97.71 69.09 73.99 5474.1 200 0.387500 78.9 0.92 _MG_0607 2752.00 3497.00 3164.79 76.26 53.93 58.69 3444.1 200 0.252033 61.9 0.95 _MG_0608 2775.00 3484.00 3178.18 76.26 53.93 58.93 3473.3 200 0.252033 62.1 0.95 _MG_0609 1682.00 2203.00 1949.83 59.27 41.91 46.52 2164.4 200 0.149758 48.4 0.96 _MG_0610 1677.00 2240.00 1975.01 59.27 41.91 47.12 2220.7 200 0.149758 48.7 0.96 _MG_0611 1023.00 1414.00 1232.22 46.87 33.14 37.18 1382.4 200 0.096875 38.2 0.97 _MG_0612 1022.00 1425.00 1239.68 46.87 33.14 37.41 1399.2 200 0.096875 38.3 0.97 _MG_0613 634.00 919.00 786.45 38.00 26.87 29.27 856.4 200 0.062753 30.2 0.97 _MG_0614 636.00 907.00 785.94 38.00 26.87 29.25 855.3 200 0.062753 30.2 0.97 _MG_0615 379.00 602.00 481.95 30.15 21.32 22.60 511.0 200 0.037349 23.2 0.97 _MG_0616 390.00 620.00 502.41 30.15 21.32 23.56 555.3 200 0.037349 23.8 0.95 _MG_0617 228.00 390.00 308.63 24.25 17.15 18.00 324.0 200 0.024217 18.2 0.99 _MG_0618 236.00 386.00 309.91 24.25 17.15 18.08 326.7 200 0.024217 18.2 0.99 _MG_0619 130.00 262.00 189.72 19.88 14.06 13.49 182.1 200 0.015705 13.7 0.99 _MG_0620 134.00 268.00 202.95 19.88 14.06 14.44 208.4 200 0.015705 14.2 0.95 _MG_0621 63.00 186.00 125.11 17.05 12.06 10.38 107.7 200 0.009337 10.6 0.98 _MG_0622 75.00 187.00 125.21 17.05 12.06 10.39 107.9 200 0.009337 10.6 0.98 _MG_0623 23.00 141.00 82.84 14.56 10.30 8.05 64.7 200 0.006054 8.1 1.00 _MG_0624 23.00 150.00 76.85 14.56 10.30 7.46 55.7 200 0.006054 7.7 1.05 _MG_0625 -12.00 122.00 50.34 12.47 8.82 5.71 32.6 200 0.003925 5.7 1.01 _MG_0626 -6.00 113.00 45.77 12.47 8.82 5.19 27.0 200 0.003925 5.3 1.08 _MG_0627 -22.00 81.00 30.17 10.92 7.72 3.91 15.3 200 0.002334 3.8 1.03 _MG_0628 -22.00 80.00 28.61 10.92 7.72 3.70 13.7 200 0.002334 3.6 1.07 _MG_0629 -36.00 71.00 19.05 10.36 7.33 2.60 6.8 200 0.001513 2.6 1.00 _MG_0630 -39.00 85.00 20.79 10.36 7.33 2.84 8.1 200 0.001513 2.8 0.93 _MG_0631 -34.00 63.00 14.53 10.01 7.08 2.05 4.2 200 0.000983 2.1 1.00 _MG_0632 -33.00 63.00 14.56 10.01 7.08 2.06 4.2 200 0.000983 2.1 1.00 _MG_0633 -45.00 67.00 9.85 9.55 6.75 1.46 2.1 200 0.000583 1.4 1.01 _MG_0634 -44.00 57.00 8.66 9.55 6.75 1.28 1.6 200 0.000583 1.3 1.13 _MG_0635 -39.00 62.00 5.87 9.29 6.57 0.89 0.8 200 0.000378 0.9 1.00 _MG_0636 -41.00 52.00 6.28 9.29 6.57 0.96 0.9 200 0.000378 1.0 0.94 Table A3: Read Noise Data and Analysis file min max mean 2-img std noise electrons gain(e/DN) ISO _MG_0427 2022.00 2088.00 2047.13 7.96 5.63 12.102 2.150 100 _MG_0428 2021.00 2078.00 2047.82 7.96 5.63 12.102 2.150 100 _MG_0429 2004.00 2110.00 2048.31 8.74 6.18 7.598 1.230 200 _MG_0430 2001.00 2100.00 2047.84 8.74 6.18 7.598 1.230 200 _MG_0431 1954.00 2147.00 2047.19 11.25 7.95 4.852 0.610 400 _MG_0432 1957.00 2157.00 2047.57 11.25 7.95 4.852 0.610 400 _MG_0433 1879.00 2298.00 2047.00 17.16 12.13 3.762 0.310 800 _MG_0434 1864.00 2253.00 2046.92 17.16 12.13 3.762 0.310 800 _MG_0435 1736.00 2477.00 2046.68 28.68 20.28 3.042 0.150 1600 _MG_0436 1744.00 2451.00 2047.99 28.68 20.28 3.042 0.150 1600 _MG_0437 1531.00 2637.00 2047.52 49.94 35.31 2.719 0.077 3200 _MG_0438 1379.00 2611.00 2046.91 49.94 35.31 2.719 0.077 3200 Data acquired by Peter A. Hawrylyshyn, M.D. November, 2009 Thermal data acquired by R. Clark, Dec 2013 to Jan 2014. Analysis by R. N. Clark December 31. 2009
References
1) CCD Gain. http://spiff.rit.edu/classes/phys559/lectures/gain/gain.html
4) http://www.photomet.com/library_enc_fwcapacity.shtml
Notes:
DN is "Data Number." That is the number in the file for each pixel. I'm quoting the luminance level (although red, green and blue are almost the same in the cases I cited).
16-bit signed integer: -32768 to +32767
16-bit unsigned integer: 0 to 65535
Photoshop uses signed integers, but the 16-bit tiff is unsigned integer (correctly read by ImagesPlus).
Home | Galleries | Articles | Reviews | Best Gear | Science | New | About | Contact |
http://www.clarkvision.com/reviews/evaluation-canon-7d
First published December 31, 2009.
Last updated November 5, 2014.